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Introduction

Classically, a special geometry over an n-manifold Mn is described in terms of G-
structures by a reduction of the canonical GL(n)-principal fibre bundle to a proper
subgroup G 6 GL(n). However, there are other canonical choices. As we will ex-
plain below, mathematically [7] as well as physically [5], [9] it is natural to consider
geometries associated with the Narain group

SO(n, n).

Basic scenario

To that effect we consider an n-manifold M together with the natural pseudo-Riemannian
vector bundle of signature (n, n)

T ⊕ T ∗, (x, ξ) = −1

2
ξ(x),

and endow T ⊕ T ∗ with its natural orientation. We obtain thus a reduction

SO(T ⊕ T ∗) = SO(n, n) ↪→ GL(T ⊕ T ∗).
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Note that
GL(T ) 6 SO(T ⊕ T ∗)

and as a GL(T )-space, the Lie algebra so(T ⊕ T ∗) decomposes as

so(T ⊕ T ∗) = End T ⊕ Λ2T ∗ ⊕ Λ2T.

In particular, we get an action of 2-forms b ∈ Λ2T ∗ (to which we refer as ”B-fields”)
by exponentiation to SO(n, n), that is

eb(x + ξ) = x⊕ ξ + xxb.

Spinors

Consider the action
(x + ξ) • ρ = xxρ + ξ ∧ ρ

of T ⊕ T ∗ on Λ∗ which defines a Clifford multiplication. Consequently, this induces
an isomorphism

Cliff(T ⊕ T ∗) = End(Λ∗)

and the spin representations are

S± = Λev,od.

Morally, we can therefore say that

differential forms = spinors for T⊕T∗.

The action of a B-field is given by

eb • ρ = (1 + b +
1

2
b ∧ b + . . .) ∧ ρ.

There is also a Spin(n, n)-invariant bilinear form

q(α, β) = (α ∧ σ(β))n,

obtained by projection on the top degree n, where σ is the Clifford algebra involution
defined on an element αp of degree p by

σ(αp) =

{ −1, p ≡ 1, 2 mod 4
1, p ≡ 0, 3 mod 4
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Generalised exceptional structures

Next we want to discuss “special” generalised G-structures, that is topological reduc-
tions to G ↪→ SO(n, n). Assume we are given a G2-structure on M7, i.e. we have a
generic 3-form with induced metric g. Then the forms

ρ = 1− ?ϕ ∈ Λev, ρ̂ = −ϕ + volg ∈ Λod

define Spin(7, 7)-spinors which are stabilised by G2 ×G2.

Similarly, if we consider a Spin(7)-structure on M8 with associated 4-form Ω, the
even form

ρ = 1− Ω + volg = ?σ(ρ)

is stabilised by Spin(7)× Spin(7).

In the same vein, there is also a natural notion of a generalised SU(3)-geometry [9].
Here, an SU(3)-structure achieves a reduction to SU(3) × SU(3) inside Spin(6, 6)
through the even and odd forms Re(Ω), Re(eiω) (or equivalently Im(Ω), Im(eiω)),
where Ω denotes the holomorphic volume form and ω the Kähler form.

In the sequel we shall focus on n = 7, i.e. the generalised G2-case. Similar state-
ments hold for n = 6 (generalised SU(3)-structures) and n = 8 (generalised Spin(7)-
structures). So assume we are given a G2 ×G2-invariant spinor ρ ∈ Λev. What does
the reduction to

G2 ×G2 ↪→ Spin(7, 7) → SO(7, 7)

imply? Firstly,
G2 ×G2 6 SO(7)× SO(7),

that is we get a generalised metric. This means that we have an orthogonal splitting

T ⊕ T ∗ = V+ ⊕ V−

into a positive and negative definite subspace V+ and V−. Figure 1 suggests how
to characterise a metric splitting algebraically. If we think of the coordinate axes
T and T ∗ as a lightcone, choosing a subgroup conjugate to SO(n) × SO(n) inside
SO(n, n) boils down to the choice of an oriented spacelike V+ and an oriented timelike
orthogonal component V−. Interpreting V+ as the graph of a linear map P+ : T → T ∗

yields a metric g and a 2-form b as the symmetric and the skew part of the dual
P+ ∈ T ∗ ⊗ T ∗. Indeed we have

g(t, t) = (t, P+t) = (t⊕ P+t, t⊕ P+t)/2 > 0

so that g is positive definite. As V+ and V− are orthogonal taking V− instead of V+

yields the same 2-form b but the metric −g . Conversely, assume we are given a
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Figure 1: Metric splitting of T ⊕ T ∗

metric g and a 2-form b on T . If we transform the diagonal D± = {t⊕∓txg | t ∈ T}
by exp(b), we obtain a splitting V+ ⊕ V− inducing g and b.

Now a further reduction to G2 × G2 yields a G2-structure on V+ and V− which can
be pulled back to give two G2-structures on T . This means that in addition to a
generalised metric, we have two spinors in the spin module ∆ associated with Spin(7)
whose stabiliser we denote by G2±. The picture to bear in mind is then this. On
the manifold, we have an orthonormal frame bundle PSO(n) and reductions to two
(possibly non-equivalent) G2-bundles PG2± .

Now the spinors stabilised by G2± are unique up to a scale, while ρ – the G2 × G2

invariant form, is also only determined up to a scale. Hence, we have an additional
degree of freedom – the dilaton function f . So the data induced by ρ is

• a metric g

• a B-field b

• two unit spinors ψ±

• a dilaton f

For the converse we can use the metric to set up the standard identification

∆⊗∆ ∼= Λev,od,

that is we consider the tensor product of spinors ϕ⊗ψ as a form. We denote its even
and odd part by (ϕ⊗ ψ)ev,od respectively. Twisting with the B-field b yields a form

(ϕ⊗ ψ)ev,od
b = eb ∧ (ϕ⊗ ψ)ev,od.
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Now regard ∆⊗∆ and Λ∗ as a G2 ×G2-module.

Theorem 1. Any G2 ×G2-invariant form in Λev,od can be uniquely written as

ρ = e−f (ψ+ ⊗ ψ−)ev,od
b .

Moreover,
(ψ+ ⊗ ψ−)ev,od

b = 2g,b(ψ+ ⊗ ψ−)od,ev
b

where 2g,b : Λev,od → Λod,ev is the generalised Hodge operator

2g,bρ = eb ∧ ?(eb ∧ σ(ρ)).

Definition 1. A topological generalised G2-structure is a pair (M7, ρ) where ρ
is an even or odd form representing a G2 × G2-invariant spinor. Equivalently, such
a structure is defined by the data (M7, g, b, ψ+, ψ−, f).

In particular, any classical G2-manifold (M7, g, ψ) with ψ ∈ ∆ induces a generalised
G2-manifold via (M7, g, b = 0, ψ+ = ψ, ψ− = ψ, f = 0). Generalised G2-structures
with ψ+ = ψ− = ψ are said to be straight. They arise as the B-field transform of a
classical G2-structure.

The variational problem

In the remainder of this talk, we want to discuss integrable generalised G2-structures.
But what is a “good” or “natural” integrability condition? In the classical case, the
most general condition to ask for is the flatness of the underlying G-structure PG,
which measures to which extent the local frames induced by a coordinate system
fail to be sections of PG. The first-order obstruction to flatness is the intrinsic
torsion of PG and the usual integrability conditions one imposes are characterised
by the vanishing of some or all components of the intrinsic torsion. For example, a
geometrical G2-structure (i.e. the holonomy reduces to G2) is a topological reduction
to G2 with vanishing intrinsic torsion, while a co-calibrated G2-structure allows non-
trivial components.

Now geometrical G2-structures can also be characterised as a critical point of Hitchin’s
variational principle [6]. More generally, with a stable form ρ, i.e. ρ lies in an open
orbit under some suitable group action, we can associate an invariant companion
form ρ̂. Together with ρ it gives rise to a volume form which over a compact manifold
can be integrated. Since the orbit is open, this functional can be differentiated. In
particular, we can consider its variation over a fixed cohomology class. If ρ is closed,
then ρ defines a critical point if and only if ρ̂ is closed. For example, the generic
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3-form ϕ defines a stable form with ϕ̂ = ?ϕ and a critical point requires ϕ to be
closed an co-closed.

Analogously to the classical G2-case, the orbit of a G2 × G2-invariant form in Λev,od

under the action of R>0 × Spin(7, 7) is open

dim R>0 × Spin(7, 7)− dim G2 ×G2 = 92− 28 = dim Λev,od,

that is the form is stable. This open orbit is effectively parametrised by the data
above, i.e.

f : 1 b : 21 g : 28 ψ+ : 7 ψ+ : 7
1 + 21 + 28 + 7 + 7 = 64 = dim Λev,od.

Here the ∧-operation is just
ρ̂ = 2g,bρ,

where g and b is induced by ρ. Now we can define a volume form by

φ(ρ) = q(ρ, ρ̂)

and consider various variational problems. The critical points of the unconstrained
problem are precisely those with

dρ = 0, d2ρ = 0,

and we call such a generalised G2-structure integrable. A constrained version of
the variational principle yields the equations

dρ = λρ̂,

where λ is a real constant. According to the parity of ρ, we call such a generalised
G2-structures weakly integrable of even or odd type.

Example: Any geometrical G2-manifold defines an integrable generalised G2-
manifold, since

ρ = 1− ?ϕ, ρ̂ = −ϕ + vol

are both closed forms. On the other hand one can show that any weakly integrable
G2-manifold which is straight is actually integrable. In this sense, there is no classical
counterpart to the notion of weak integrability.
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Spinorial solution of the variational problem

Theorem 2. A generalised G2-structure (M7, ρ) is (weakly) integrable (of even or
odd type) if and only if for any vector field X e−f (ψ+ ⊗ ψ−)b = ρ + 2ρρ satisfies

∇Xψ± ± 1
8
Xxdb · ψ+ = 0

(df ± 1
4
db± λ) · ψ± = 0 (even type)

(df ± 1
4
db + λ) · ψ± = 0 (odd type)

We refer to the equation involving the covariant derivative of the spinor as the gen-
eralised Killing equation and to the equation involving the differential of f as the
dilaton equation. The generalised Killing equation basically states that we have
two metric connections ∇± preserving the underlying G2±-structures whose torsion
(as it is to be defined in the next section) is skew. The dilaton equation then serves
to identify the components of the torsion with respect to the decomposition into ir-
reducible G2±-modules with the additional data df and λ. The generalised Killing
and the dilaton equation occur in physics in bosonic type IIA/B supergravity and
superstring theory [4], [9].

Proof: (sketch) It is well-known that the twisted Dirac operator D transforms
under the standard isomorphism ϕ⊗ψ ∈ Λ∗ into d+d∗. For the twisted isomorphism
(ϕ⊗ ψ)b we find

D(ϕ⊗ ψ)b = d(ϕ⊗ ψ)b + d2(ϕ⊗ ψ)b +
1

2
eb/2 ∧ (dbx(ϕ⊗ ψ)− db ∧ (ϕ⊗ ψ)),

where d2αp = (−1)n(p+1)+12d2αp. Using this plus the usual spinor algebra rules
yields the result. ¥

Remark: More generally, we can replace db by a closed 3-form. In terms of the
variational problem this corresponds to the variation over a twisted cohomology class
rather than a usual de Rham cohomology class.

Geometrical properties

The theorem asserts that we have two connections∇+ and∇− with skew-symmetric
torsion ±db, each of which preserving the G2±-structure defined by the spinors
ψ±. This kind of connections was studied in a series of papers by Friedrich and
Ivanov [2], [8], [3]. In particular, we have

db = ∓e−2f ? (de−2fϕ±)
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which implies for a compact M that
∫

M

e−2fdb ∧ ?db = ∓
∫

M

db ∧ d(e−2fϕ±) = 0.

Consequently, any integrable generalised G2 × G2 structure on a compact manifold
consists of two geometrical G2-structures (i.e. there are only ”trivial” solutions for
the variational problem). However, there are compact examples of weakly integrable
structures.

What about homogenous structures?

Proposition 3. The Ricci-tensor of an integrable generalised G2 structure is given
by

Ric(X, Y ) = −7

2
Hf (X, Y ) +

1

4
g(Xxdb, Y xdb),

where Hf (X, Y ) = X.Y.F − ∇XY.f is the Hessian of the dilaton f . The structure
is Ricci-flat if and only if df = 0 (implying db = 0). In particular, there are no
non-trivial homogeneous examples.

T -duality

For the construction of examples, the form approach is most useful. Here we will
discuss the device of T-duality which comes from string theory where it interchanges
type IIA with type IIB. It can be applied in the situation where we are given an S1-
fibre bundle P with connection form θ [1]. T -duality associates with this data another
S1-principal fibre bundle P T over the same base, but with a different connection 1-
form θT . The T -dual of the spinor

ρ = θ ∧ ρ0 + ρ1

of a generalised structure is defined to be

ρT = θT ∧ ρ1 + ρ0.

In particular, ρ is closed if and only if ρT is closed. Moreover, (2ρ)T = 2ρT ρT and
hence T -duality preserves strong integrability. It also exchanges parity and preserves
weak integrability so that in particular, a weakly integrable generalised G2-structure
of even type becomes a weakly integrable structure of odd type.

We then construct non-trivial (integrable) examples by T -dualising a straight geo-
metrical G2-structure over an S1-bundle (local examples hereof exist in abundance).
Schematically
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twisted S1 structure, but straight G2 ×G2 structure

which we replace by P T with a flat connection form θT , i.e.

trivial S1 structure, but non-straight G2 ×G2 structure.
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