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0 Introduction

Lie Groups and Symmetric Spaces

We will be concerned with

(a) semi-simple Lie groups with trivial centre and no compact factors and

(b) simply connected, non-positively curved symmetric spaces of non-compact
type.

There is a bijection between these two classes of object. Given a Lie group
G of class (a) one endows it with a left-invariant Riemannian metric, takes
a maximal compact subgroup K, and forms the quotient space G/K. This
manifold, together with the inherited Riemannian metric, is a symmetric space
of class (b). Conversely, given a symmetric space M of class (b), the connected
component of the identity in Isom(M) is a Lie group of class (a).

Definition 1. The (real) rank of a simply connected, non-positively curved
symmetric space is the maximal dimension of an embedded Euclidean subspace.

The (real) rank of a semi-simple Lie group (of class (a)) is the rank of its
associated symmetric space.

There is a fundamental dichotomy between the rank 1 and higher rank (i.e.
rank ≥ 2) cases.

Examples

Rank 1 All rank 1 symmetric spaces of class (b) are of the form KHn for
K = R,C or H (the quaternions) except for one exceptional example of
dimension 8 based on the octonions.

Rank ≥ 2 In higher rank one sees much more diversity. The key example is
the Lie group SL(n,R) and the associated symmetric space SL(n,R)

O(n,R) .
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Mostow Rigidity

Theorem 2 (Mostow Rigidity). Let G be a Lie group of class (a), and let Γ1

and Γ2 be lattices in G with Γ1
∼= Γ2 (as abstract groups). If rk(G) = 1 we

require that G � Isom+(H2) ∼= PSL(2,R). If rk(G) ≥ 2 we require that the Γ1

and Γ2 are irreducible. Then there exists g ∈ G such that Γg
1 = Γ2.

The proof in the higher rank case is completely different to that in the rank 1
case. The higher rank case leads to super-rigidity and arithmeticity, i.e. that all
irreducible lattices in higher rank Lie groups arise from arithmetic constructions.

The aim in this series of lectures is to prove Mostow rigidity in the real
hyperbolic rank 1 case, i.e. where G = SO(n, 1) = Isom+(Hn) for n ≥ 3. We
thus aim to prove:

Theorem 3. Let Γ1 and Γ2 be lattices in SO(n, 1) for n ≥ 3. If Γ1
∼= Γ2 then

there exists g ∈ SO(n, 1) such that Γg
1 = Γ2.

Corollary 4. In the torsion free case we have that if M1
∼= Hn/Γ1 and M2

∼=
Hn/Γ2 are finite volume hyperbolic manifolds then the following are equivalent:

1. Π1M1
∼= Π1M2

2. M1 is homotopy equivalent to M2

3. M1 is homeomorphic to M2

4. M1 is isometric to M2.

Structure of the Course

(i) Some real hyperbolic geometry.

(ii) Some possible strategies of proof.

(iii) Then break into two cases:

Co-compact case where Γ1, Γ2 are uniform lattices and M1, M2 are
compact. In this case we give as detailed as possible a version of
the Gromov–Thurston proof, which contains a minimal amount of
analysis.

Non-compact case where Γ1, Γ2 are non-uniform lattices and M1, M2

have finite volume but are not compact. In this case we consider the
quasi-isometric rigidity given by the following result.

Theorem 5. Let Γ be a non-uniform lattice in SO(n, 1) for n ≥ 3. Let Λ be
a finitely generated group quasi-isometric to Γ. Then there exists a short exact
sequence of groups

1 → K → Λ → Γ′ → 1

with |K| finite and Γ′ a lattice in SO(n, 1) such that Γ and Γ′ are commensurable
(i.e. have a common subgroup of finite index).
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Corollary (of theorems 1 and 2). Let Γ1, Γ2 be lattices in SO(n, 1) for n ≥ 3.
Then Γ1 is quasi-isometric Γ2 if and only if either

• Γ1 and Γ2 are co-compact or

• Γ1 and Γ2 are not co-compact and there exists g ∈ SO(n, 1) such that
Γ1 ∩ Γg

2 has finite index in both Γ1 and Γg
2.

[Note to reader: This course structure does not appear to have been followed
too closely.]

1 Basic Geometry of Hn

See Milnor - First 150 years of hyperbolic geometry, Bull. AMS 1982.

Hyperboloid Model

Definition 6. En,1 is Rn+1 with the symmetric form of type (n, 1) given by

〈x, y〉 =
n∑

r=1

xiyi − xn+1yn+1

for x = (x1, . . . , xn+1) and y = (y1, . . . , yn+1). S+ and S− are the upper and
lower components respectively of the sphere of radius −1 in En,1, i.e.

S+ = {x ∈ En,1|〈x, x〉 = −1, xn+1 > 0}
and

S− = {x ∈ En,1|〈x, x〉 = −1, xn+1 < 0}.
Hn is S+ with the Riemannian metric 〈 , 〉|TS+ .

The following lemma shows that this metric on Hn is a genuine Riemannian
metric.

Lemma 7. The inner product 〈 , 〉 is positive definite when restricted to TS+.

The geodesics in this model of Hn are then easily seen to be the intersections
of S+ with the dimension 2 hyperplanes in En,1.

Definition 8. O(n, 1) = {A ∈ Matn+1,n+1(R)|〈Ax,Ay〉 = 〈x, y〉∀x, y ∈ En,1}.
Thus O(n, 1) preserves S+ ∪S−, but some elements interchange the two sheets.
SO(n, 1) = {A ∈ O(n, 1)|det A = 1} is the index 2 subgroup in O(n, 1) which
preserves S+.

Lemma 9. SO(n, 1) acts transitively on S+ = Hn with point stabilizer SO(n).

The drawbacks of the hyperboloid model of Hn include the facts that:

(i) It is difficult to check the homogeneity of Hn.

(ii) One doesn’t get a nice description of the Riemannian metric.

(iii) The boundary at infinity is not obvious.

We solve these problems by finding different models of Hn.
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Klein/Beltrami Model

Definition 10. Bn = {(x1, . . . , xn, 1) ∈ En,1|x2
1 + . . . + x2

n < 1}. The Rie-
mannian metric on Bn is obtained by pulling back the metric on S+ via the
bijection S+ → Bn given by projecting from the origin.

It is easy to see, via this map, that the geodesics in the Beltrami model
are the intersections of Euclidean straight lines with the disc Bn. Thus Hn is
uniquely geodesic.

Hemisphere Model

Definition 11. Jn = {(x1, . . . , xn+1) ∈ En,1|x2
1 + . . . , +x2

n+1 = 1, xn+1 > 0}.
The Riemannian metric on Jn is obtained by pulling back the metric on Bn via
the bijection Bn → Jn given by vertical projection.

The geodesics in the hemisphere model are the intersection of the hemisphere
Jn with vertical planes. They are thus semicircles orthogonal to ∂Jn.

Poincaré Disc Model

Definition 12. Dn = {(x1, . . . , xn, 0) ∈ En,1|x2
1 + . . . + x2

n < 1}. The Rie-
mannian metric on Dn is obtained by pulling back the metric on Jn via the
bijection Jn → Dn given by stereographic projection from (0, . . . , 0,−1).

Since stereographic projection is conformal the geodesics in Dn are semicir-
cles orthogonal to ∂Dn.

Lemma 13. The Riemannian metric obtained on Dn is

ds2
H(x) =

4ds2
E(x)

(1− ‖x‖2E)2
.

Upper Half-Space Model

Definition 14. Un = {(1, x2, . . . , xn+1) ∈ En,1|xn+1 > 0}. The Riemannian
metric on Un is obtained by pulling back the metric on Dn via the bijection
Bn → Jn given by the Cayley transform.

Lemma 15. The Riemannian metric this gives on Un is

ds2
H(x) =

ds2
E(x)

x2
n+1

.

In this model it is easy to see that horospheres in Hn have a Euclidean
structure. Indeed let p be the point where the horosphere touches the horizontal
plane xn+1 = 0. Map p to infinity so as the horosphere becomes a horizontal
plane xn+1 = h, for some h ∈ R. The restriction of the hyperbolic metric to
this plane is just dsE

h .
NB: This shows that parabolic subgroups of lattices in SO(n, 1) are Bieber-

bach groups, i.e. have a subgroup Zn−1 of finite index.
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Boundary at Infinity

In Dn, the Poincaré disc model, the (Euclidean) unit sphere appears as the
set of ideal points Dn \ Dn. This is apparently an artifact of the embedding
Dn ↪→ En, but in fact ∂Hn is a sphere of dimension n − 1 for intrinsic reasons
and plays a central role in rigidity theory.

Ideal Simplices

Consider a geodesic triangle ∆ in H2 with interior angles α, β, γ at its vertices.
The Gauss–Bonnet Theorem shows that Area(∆) = π−α−β−γ. Thus an ideal
triangle in H2 has area π. It can be shown that up to the action of SO(2, 1)
there is a unique ideal triangle in H2.

Exercises on the higher dimension case:

(i) Up to the action of SO(n, 1) there is a unique regular n-simplex in Hn,
where by regular we mean all dihedral angles equal.

(ii) Up to the action of SO(n, 1) there is a unique largest volume geodesic n-
simplex. This turns out to be a regular ideal n-simplex. [See Munkholm]

2 The Boundary at Infinity of a Non-Positively
Curved Symmetric Space

Rigidity is all about understanding how much fine structure actually exists
implicitly at infinity.

The Boundary at Infinity of a Metric Space

In the Poincaré disc model, Dn, of Hn, there is an intuitive boundary at infinity,
namely Sn−1. The following definition gives an intrinsic meaning to this.

Definition 16. Let X be a metric space. The boundary at infinity of X,
written ∂X, is defined to be the collection of asymptoty classes of geodesic rays
c : [0,∞) → X. Given rays c1, c2 : [0,∞) → X write c1(∞) = c2(∞) if c1 and
c2 are asymptotic, and hence represent the same element in ∂X.

Lemma 17. Let X be a complete CAT(0) space, and let p ∈ X. Then for every
geodesic ray c : [0,∞) → X there exists a unique geodesic ray c′ : [0,∞) → X
asymptotic to c such that c′(0) = p.

It follows that in a complete CAT(0) space, and so in particular the class of
symmetric spaces we are dealing with, we have the following alternative defini-
tion of the boundary at infinity:

Definition 18. Let X be a complete CAT(0) space, and X0 ∈ X be a basepoint.
Then ∂X is the collection of geodesic rays c : [0,∞) → X with c(0) = X0.
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Topologising the Boundary

We want more structure on ∂X than just that of a set. The following definition
shows how to topologise X ∪ ∂X in the case where X is a complete CAT (0)
space.

Definition 19. Let X be a complete CAT(0) space and let X0 be a basepoint.
Given a geodesic ray c : [0,∞) → X with c(0) = X0 and positive numbers
R > 0, ε > 0 let

Vε,R(c) = {c′(t)|c′ : [0,∞) → X is a geodesic ray , c′(0) = X0, t ∈ (R,∞], d(c(R), c′(R)) < ε}.
Then the cone topology on X ∪ ∂X is the topology with basis the collection of
open balls B(x, r) for x ∈ X together with the collection of all sets Vε,R(c) for
c a geodesic ray with c(0) = X0.

Lemma 20. (i) The topology this gives on X ∪ ∂X is independent of the
basepoint X0.

(ii) Considering the Poincaré disc model for Hn, the ’identity’ map

(Hn ∪ ∂Hn,Cone topology) → (B(0, 1) ⊆ En, Euclidean topology)

is a homeomorphism.

Metricising the Boundary

What more structure can we have at infinity? The following definition gives a
first attempt at defining a metric on ∂X.

Definition 21. Let X be a complete CAT(0) space and X0 be a basepoint.
Given ξ1, ξ2 ∈ ∂X define ∠X0(ξ1, ξ2) to be the angle between the unique geodesic
rays c1, c2 with ci(0) = X0 and ci(∞) = ξi.

Lemma 22. For any choice of basepoint X0 the topology this metric induces
on ∂X agrees with the cone topology.

But the metric depends on the choice of basepoint. To rectify this problem
we make the following definition.

Definition 23. Let X be a complete CAT(0) space. The angular metric on
∂X is defined to be

∠(ξ1, ξ2) = sup
X0∈X

∠X0(ξ1, ξ2)

for ξ1, ξ2 ∈ ∂X.

Examples:

(i) In En, ∠p(ξ1, ξ2) = ∠q(ξ1, ξ2) for all p, q ∈ En and ξ1, ξ2 ∈ ∂En. Thus
∠ = ∠p for any choice of basepoint p. It follows that ∂En is isometric to
Sn−1 via the map which takes ξ ∈ ∂En to the intersection of the geodesic
ray from 0 to ξ with the unit sphere centred at 0.
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(ii) In Hn there is a unique geodesic joining any two distinct points ξ1, ξ2 ∈
∂Hn. Thus the angular metric is the discrete metric with ∠(ξ1, ξ2) = π
whenever ξ1 6= ξ2.

The Tits Boundary

We want to use the contrast in behaviour between examples (i) and (ii) to pick
out Euclidean subspaces in an arbitrary symmetric space.

Lemma 24. Let X = H2×H2. Then (∂X, ∠) is isometric to the spherical join
H2 ∗H2, where each H2 has the discrete angular metric.

Thus the metric picks out the flat directions. More generally if X is a
symmetric space of non-compact type then the boundary encodes the structure
of the flats in X.

Definition 25. Let X be a CAT(0) space. The Tits metric on ∂X is the length
metric dT associated to the angular metric ∠. The Tits boundary ∂T X of X is
∂X together with this metric.

Theorem 26 (Tits). Let X be a higher rank irreducible symmetric space. Then
B = ∂T X is a spherical Tits building and Aut(B), the group of diagram auto-
morphisms of the building, is ’exactly’ the underlying algebraic group.

For example, let X = SL(n,R)
O(n,R) and B = (∂X, dT ). Then Aut(X) ′=′ SL(n,R).

The Visual Metric on ∂Hn

Since the angular metric on ∂Hn is not very useful, we construct a better one.

Definition 27. Choose a basepoint p ∈ Hn. Given ξ1, ξ2 ∈ ∂Hn define

ρ(ξ1, ξ2) = e−d(p,[ξ1,ξ2])

where [ξ1, ξ2] is the unique geodesic joining ξ1 to ξ2. The visual metric on ∂Hn

is the pseudometric associated to ρ, which can be shown to be a genuine metric.

Lemma 28. ∂Hn together with the visual metric is isometric to Sn−1 together
with the usual round metric.

However, it is all very well recovering the usual metric on ∂Hn ∼= Sn−1, but
the action of Isom(Hn) extends continuously to an action on ∂Hn which does
not preserve this metric. What does it preserve?

Lemma 29. Let θ ∈ Isom(Hn) and let θ̃ be the induced map on ∂Hn. Then θ̃
is conformal with respect to the visual (i.e. round) metric on ∂Hn.

Proof. Isom(Hn) is generated by reflections in co-dimension 1 hyperplanes, so
it suffices to prove the result for such transformations. In the Poincaré ball
model of Hn such a hyperplane is a sphere Sn−1 perpendicular to the boundary
∂B(0, 1) ∼= Sn−1. Thus the induced map θ̃ is inversion in such a sphere and so
is an element of Möb(Sn−1). Hence it is conformal.
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3 Sketch Proof of Mostow Rigidity

Background Notions : Quasi-isometry

All proofs of Mostow Rigidity involve the notion of quasi-isometry.

Definition 30. A map ϕ : (X1, d1) → (X2, d2) between metric spaces is a
quasi-isometry if there exist constants λ ≥ 1, ε ≥ 0 and C ≥ 0 such that

(i) for all x, y ∈ X1
1
λd1(x, y)− ε ≤ d2(ϕ(x), ϕ(y)) ≤ λd1(x, y) + ε and

(ii) for all z ∈ X2 there exists x ∈ X1 such that d2(ϕ(x), z) < C.

Examples:

(i) If Γ1,Γ2 are finitely generated groups and ϕ : Γ1 → Γ2 is a homomorphism
with finite kernel and finite index image then ϕ is a quasi-isometry.

(ii) If a finitely generated group Γ acts properly and co-compactly on a geo-
desic space X then for any choice of basepoint x0 ∈ X the map Γ → X
given by γ 7→ γx0 is a quasi-isometry. Thus Z2 is quasi-isomatric to E2,
and if Γ is a co-compact subgroup of SO(n, 1) then Γ is quasi-isometric
to Hn. As a corollary we see that if Γ1, Γ2 are both co-compact lattices in
SO(n, 1) then Γ1 is quasi-isometric to Γ2.

Proof in Rank 1 case

Lemma 31 (Morse Lemma). Let X = Hn, or more generally any δ-hyperbolic
space, and let c : R→ X be quasi-geodesic. Then there exists a unique geodesic
γ : R→ X such that Im(c) ⊆ Nε(Im(γ)) for some ε.

This stability of quasi-geodesics allows us to consider ∂X in terms of quasi-
geodesic rays. Note that the equivalent statement is not true in general if X is
not δ-hyperbolic. For example, in En consider the path c : [0,∞) → En given
by c(θ) = r(θ)eiθ. If this rotates slowly enough, for example if r(θ) = log(θ),
then this is a quasi-geodesic ray, but it is clearly not close to any geodesic ray.

Sketch proof of rank 1 Mostow rigidity (theorem 2). ϕ : Γ1 → Γ2 is an isomor-
phism, so in particular is a quasi-isometry. We have two homomorphisms
ψ1, ψ2 : Γ1 → Aut(∂Hn). ψ1 is the obvious map

Γ1 ↪→ SO(n, 1) → Conf(∂Hn)

and ψ2 is the map

Γ1
ϕ→ Γ2 ↪→ SO(n, 1) → Conf(∂Hn).

These two maps can be shown to be injective so we have two copies of Γ1 in
Conf(∂Hn). We want to construct γ ∈ SO(n, 1) ⊆ Conf(∂Hn) which conjugates
these two copies. It can be shown that ϕ induces a map ∂ϕ ∈ QConf(∂Hn), the
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group of quasi-conformal transformations of ∂Hn (which is roughly the collec-
tion of transformations which distort angles by a bounded amount), and that
∂ϕ conjuagtes the two copies of Γ1. Then use analysis to show that if sub-
groups are conjugate in UQConf(∂Hn), the group of uniform quasi-conformal
transformations, then they are conjugate in Conf(∂Hn).

Proof in Higher Rank Case

NB: It is not true that every quasi-isometry Hn → Hn is Hausdorff close to an
isometry.

The following result is the higher dimensional analogue of the Morse Lemma.

Theorem 32 (Margulis, etc.). The X be a higher rank irreducible symmetric
space. If ϕ : X → X is a quasi-isometry and E ↪→ X is a maximal flat, then
ϕ(E) is in a bounded neighbourhood of a unique flat.

Corollary 33. Any quasi-isometry ϕ : X → X induces an automorphism of
the the spherical Tits building B = (∂X, dT ).

Sketch proof of higher rank Mostow rigidity. Given co-compact lattices Γ1,Γ2

and ϕ : Γ1 → Γ2, we obtain as before ψ1, ψ2 : Γ1 ↪→ Aut(B). Then Γ1 and
Γ2 are conjugate in Aut(B) by ∂ϕ. But G = Aut(B) is the original Lie group
by Tits’ theorem 23.
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