LATTICES IN Sol

W. DISON

Definition 1. Let (G, dg) be a Lie group with a left invariant Riemannian metric.
A subgroup I' < @ is said to be discrete if the induced subset topology on T is
discrete. Since dg is left invariant there is an induced metric on the quotient space
G/I', where I acts on G by left translation. We say that I' is a lattice in G if I is
a discrete subgroup and Vol(G/T) is finite.

Note in particular that if I' < G is a discrete subgroup with G/T" compact then
T is a lattice in G.

Definition 2. By Sol we mean the Lie group R? x R where ¢ € R acts on R? as
(et 0 ), so as multiplication is given by (x1,y1,t1)(z2,y2,t2) = (z1 + e''ma,y1 +

0 et
e ys,t1 +15), together with the left invariant Riemannian matric ds? = e~2?'dz? +
e2tdy? + dt?.

The metric on Sol is constructed from a collection of trivializing left invariant vec-
tor fields as follows. Consider the three curves R — Sol given by v1 : s — (s,0,0),
Yo : s — (0,5,0) and 73 : s — (0,0,s). These have tangent vectors % = a%,
% = 8% and % = % at (0,0,0) respectively, and these span the tangent space at
that point. The left action of the group on these vectors gives a collection of three
left invariant vector fields X7, X5 and X3 which form a basis for the tangent space at
each point. (z,y,t)y1 : s — (z+ets,y,t) so Xi(z,y,t) = % (2,9, )71 Hs=0 = eta%.
Similarly (z,y,t)y2 : s — (z,y + e 's,t) so Xa(x,y,t) = %{(m,y,t)wgﬂs:o =
_ta% and (z,y,t)y3 : s — (z,y,t + s) so X3(x,y,t) = % (2,y,t)V3}s=0 = %.
We construct the metric to be orthogonal at every point with respect to these
vector fields. Thus (a%kw,y,t)’ %km,y,t)) = (e7' X (2, y,t), et X (2, y,t)) = e 2,
(aiykfc,y,t)a %‘(’I‘,y,f)) = (_etXZ(xa Y, t)a _etX2(1'v Y, t)) = e and (%‘(m,y,t)v %‘(T,y,f)) =
(X3(z,y,t), X3(z,y,t)) = 1 and so we obtain the metric given above.

—e

Proposition 3. Let A € SLy(Z). Suppose that A is conjugate in GL2(R) to
a matrix of the form (é )\91) for some A\ # 1. Then there is a quasi-isometric
embedding Z2 x4 Z — Sol and the image is a lattice. In particular if A and B are

both matrices of the above form then Z2 x4 Z is quasi-isometric to Z2 x g Z.

Note that by Z? x 4 Z we mean the semidirect product where t € Z acts on Z? as
A? s0 as multiplication is given by (x1,y1,t1) (%2, Y2, t2) = ((z1,91) + A(x2,y2), t1 +
ta).

Proof. By assumption there exists P € GLo(R) such that PAP~! = (6\ )\91) and

s € R\ {0} such that (g‘ ) = (eo 695 ). Define the embedding by (z,y,t) —
(P(z,y),st) and note that since s # 0 and P is nonsingular this is an injec-

tion. The following calculation demonstrates that this gives a homomorphism:
(21,91, t1) (02, Y2, t2) = (w1, y1)+A" (22, y2), ti+t2) — (P(21,y1)+PA" (v2,92), s(t1+

s t1 st
t2)) = (P(3317y1)+(60 695) P(x2,y2), st1+st2) = P(ml,yl)"'(eol eflnl ) P(x2,y2), st1+
stg) = (P(z1,y1), st1)(P(z2,y2), stz). The quotient of Sol by Z?x 4Z is a T? bundle
over S! so is compact. Thus Z? x4 Z is indeed a lattice in Sol.

1



LATTICES IN Sol 2

We now show that the action of Z? x4 Z on Sol is proper. Thus let p =
(X,Y,T) € Sol and let v = (v1,72,73) € (Z* x4 Z)\ {1}. Then vp = (P(y1,72) +
(e X,e YY), sy3 +T). If v3 # 0 then d(p,yp) > |s| > 0. If vy3 = 0 then
vp = (P(y1,72) + (X,Y),T) and both p and 7p lie in the same horizontal plane
t = T on which the metric restricts to ds? = e 2Tdx? + e2Tdy? + dt?. In this
case let p = min{e ", e2T} > 0 and let K = infj(; 4,21 [|P(z,y)]l2 > 0. Then
d(p,vp) = pK|(71,72)[l2 and since v # 1 (v1,72) # (0,0) so d(p,vp) > pK. We
have thus shown that for all v € Z2 x4 Z with v # 1, d(p,vp) > min{s, uK} > 0.
Hence the action of Z2 x4 Z on Sol is proper. Since the action is also cocompact
the Svarc-Milnor Lemma says that the embedding is a quasi-isometry. O

Proposition 4. The vertical planes in Sol given by x = ¢ or y = ¢ for some c € R
are isometric to the hyperbolic plane H?2.

Proof. Fix ¢ € R and consider the plane P given by x = ¢. The metric on Sol

restricts to e2!dy? + dt? on P and there is a bijection P — H? given by (c,y,t) —

(y,e™t). To see that this is an isometry consider the change of variable ¢’ = e™¢, so

as dt' = —e~'dt. With respect to these new coordinates the metric on P is given
2 —t\2 2 2 2
by e*dy? + dt? = dy +(e__egt ydt” _ dy :,th which is the hyperbolic metric.
The case y = c is similar with the isometry given by (z, ¢, t) — (z,e?). O

Definition 5. Let Y be a metric space and X be a subspace with the induced length
metric. The distortion function of X in Y is Dist(n) = sup{dx(a,b)|dy (a,b) < n}.

Definition 6. A horocycle in H? is a subspace which, in the upper half plane model
of H?, is either a Euclidean circle tangent to the z-axis or is a horizontal line (i.e.
a Euclidean circle tangent to the boundary of H? at infinity at infinity).

Lemma 7. The distortion of a horocycle in H? is (n) ~ e" (i.e. eéff) —1). [No
proof]

Proposition 8. The distortion of a horizontal plane P in Sol is ¢(n) ~ e"

~ is the equivalence of functions associated to Dehn functions.

, where

Proof. Since the metric on Sol is left invariant we can assume, by left translating,
that P is the horizontal plane through the origin.

To prove the lower bound define p, = (n,0,0) € Sol for n € Ry. This lies
in the vertical hyperbolic plane @ = {(z,0,t)|z,t € R}. Note that the subspace
{(2,0,0)] € R} is a horocycle in @, so by the lemma there exists A such that
dso1(0,pn) = dg(0,pn) < Alog(n). But dp(0,p,) = n since the metric restricted to
Pis ds? = dr?+dy?, so P is isometric to the Euclidean plane. Thus 6(Alog(n)) > n
and so (n) > /4.

To prove the upper bound let p = (p1,p2,0) € P with dg,(0,p) < n. Say v
is a geodesic joining 0 to p in Sol, so |y| < n. Let @1 and Q2 be the vertical
hyperbolic planes {(z,0,t)|z,t € R} and {(0,y,t)]y,t € R} respectively. Note that
under the isometries of Q; and @, with H? given in proposition 4 the subspaces
Ly == {(2,0,0)]z € R} C @1 and Ly := {(0,9,0)|y € R} C Q2 both correspond to
the same horocycle. Thus there exists B > 1 such that the distortion functions 6
and 03 of L; in Q1 and Lo in @9 respectively satisfy 61(n),02(n) < Be™. Let v
and 7, be the projections of v onto @1 and Qs respectively, and note that |y;| and
|v2| < |v] < n. Thus dg, ((0,0,0), (p1,0,0)) < n and dg,((0,0,0),(0,p2,0)) < n
and so p; and py < Be™. Hence dp(0,p) < v2Be™ and we have ¢(n) < v2Be". 0O

Definition 9. Let M be a complete Riemannian manifold. Given ¢ : ' — M
a null-homotopic, rectifiable loop, define the filling area of ¢ to be FArea(c) =
inf{Area(f)|f : D> — M lipschitz, df = c}. Then the isoperimetric function of M
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is defined to be Fillp; (1) = sup{FArea(c)|c : S* — M null — homotopic, recifiable, |c| <
1}

Proposition 10. Let f : My — My be a quasi-isometry between complete Rie-
mannian manifolds. Then Filly;, ~ Fillyg,. [No proof]

Proposition 11. A geodesic metric space is d-hyperbolic if and only if it has a
linear isoperimetric function. In particular Fillgz is linear. [No proof]

Proposition 12. Sol has exponential isoperimetric function.
To prove this we need the following result.

Lemma 13. Let G be a Lie group with a left-invariant Riemannian metric and let
w be a left-invariant 2-form on G. Let 0 : D?> — G be an immersed 2-cell. Then
there exists K > 0 such that [ w < KArea(o). [Specifically K = ||wl|.] [No proof]

Proof of proposition 12. We only prove a lower bound.

We construct an exact left-invariant 2-form on Sol from the left-invariant vector
fields X1, X2, X3 defined above. Let X', X2, X3 be the left-invariant 1-forms dual
to these, namely e~ *dx, e'dy and dt. Thenlet w = X'AX? = dzAdy. I;(X'AX?) =
(XY AL(X?) = X A X? so this form is indeed left-invariant. d(dx A dy) = 0 so
w is closed, and since H?(Sol) = H?(R3) = 0 w is exact.

For [ € R, we construct a loop ¢; : S* — Sol as follows. Let p; = (%l, %Z,O),pg =
(%l, —%1,0)7]93 = (—%L —%1,0),p4 = (—%l, %Z,O), i.e. the points at the four corners
of a square of side length [ in the horizontal plane in Sol through 0. Let Q; be the
vertical hyperbolic plane containing p; and p;+1 (addition taken modulo 4). Let v;
be the hyperbolic geodesic in @; joining p; to p;+1. Let ¢; be the concatenation of
Y1,-..,74. By lemma 7 there exits A such that |¢;| < Alog(l) for all I. We will
show that there exits K > 0 such that FArea(c;) > KI?.

By lemma 13 there exist K > 0 such that the area of any filling disc o for
¢ is bounded below by K [ w. But since w is exact the value of this integral is
independent of the disc chosen, so FArea(c;) is bounded below by K fU w for any
choice of filling disc 0. We construct a choice of disc for which it is easy to evaluate
the integral. Let H be the horizontal plane in Sol through 0. For 1 < i < 4 let o;
be the 2-disc in Q; bounded by v; and Q; N H. Let ¢’ be the 2-disc in H bounded
by the four lines Q; N H. The union of these five discs o1, 02,03,04 and o’ gives a
filling disc for ¢; consisting of a horizontal square of side length [ and four vertical
flaps. We now calculate fa w. w pulls back to 0 on each ¢; so fm w=0.0no wis
the Euclidean form dz A dy so [, w = 2. Thus fw= 12 and so FArea(c;) > KI2.

Hence Fillgy(Alog(l)) > K12 so Fillgy (1) > Ke?/A. O

Corollary 14. Let A € SLy(Z) with A conjugate in GL2(R) to a matriz of the

form (g‘ Agl) for some A > 1. Then Z2 x4 Z has exponential Dehn function.

Proof. Proposition 3 showed that Z2 x 4 Z is a lattice in Sol and acts on it properly
and cocompactly by left translation. Since the action is also free it is a covering
space action and so we have that Sol is the universal cover of a compact manifold
M with II; (M) 2 Z? x4 Z. By the Filling Theorem dz2,,7 ~ Fillpy ~ Fillg =
Fillgy;. O

The main result of the lectures is the following theorem on the quasi-rigidity of
lattices in Sol.

Theorem 15. Let T be a finitely generated group quasi-isometric to Sol. Then there
exists K < T with |K| finite such that Z? xa Z <j; T/K for some A € SLs(Z)

with A conjugate in GLo(R) to a matrix of the form (3 )\91) for some A > 1.
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To begin the proof of this result we require the following definitions.

Definition 16. For ¢ € R let Py C Sol be the horizontal plane {(z,y,t)|t = t'}.
Then a quasi-geodesic v : R — Sol is said to be vertical if there exists M such that
diam(y N P;) < M for all t € R. A wertical quasi-geodesic ray is defined similarly.

By a wertical geodesic (respectively a wertical geodesic ray) in Sol we mean a
geodesic R — Sol (respectively a geodesic ray [0, 00) — Sol) of the form t — (z,y,t)
or t — (x,y,—t) for some z,y € R.

Definition 17. Let X be a metric space. Then the Hausdorff distance between
two sets A, B C X is dy(A, B) = inf{¢|A C N(B),B C N.(A)}, where N, is the
e-neighbourhood of a set.

Definition 18. Let X be a metric space and 71,72 : [0,00) — X be geodesic rays.
We say that v, is asymptotic to 7 if there exists M such that d(v;(t),y2(t)) < M
for all ¢ € [0,00). It can be shown that this is equivalent to the Hausdorff distance
between the images of v, and 72 being finite.

Now let 1,72 : [0,00) — X be quasi-geodesic rays. We say that v and 7,
are asymptotic if dp(im(y;),im(7y2)) is finite. [Note that this is not equivalent to
d(v1(t),v2(t)) being bounded.]

We write 71 ~ 72 if 91 and 2 are asymptotic (quasi-)geodesic rays.

Note that quasi-isometries preserve the asymptoticity of quasi-geodesic rays.

Proposition 19. Let v be a vertical quasi-geodesic ray in Sol. Then there exists
€ and a vertical geodesic ray 7 such that dy(v,7) < €, i.e. every vertical quasi-
geodesic is asymptotic to a vertical geodesic.

.PT'OOf, ks sk skoskosk sk sk skokosk sk sk skokoskosk skokoskoskosk skokoskosk O

Proposition 20. Let f : Sol — Sol be a quasi-isometry, and let v be a vertical
quasi-geodesic ray. Then fv is a vertical quasi-geodesic Tay.

PT’OOf. Kook >k ok ok ok ok ok ok ok ok ok ok okok sk ok sk sk ok skook ok skok skok sk kok skok skok skokkok O

Definition 21. Let X be a metric space. Define the boundary 0X of X to be the
collection of geodesic rays in X modulo the equivalence relation v, ~ 79 if 1 and
Y2 are asymptotic.

We now introduce the following subspaces of dSol. Let Y Sol be the collection
of vertical geodesic rays (modulo asymptoticity) of the form ¢ — (z,y,t) for some
x,y € R. Similarly define 9% Sol to be the collection of vertical geodesic rays of the
form t + (z,y,—t). Note that by proposition 19 9V Sol U ¥ Sol is equivalent to
the collection of vertical quasi-geodesic rays modulo asymptoticity. Furthermore, by
proposition 20, a quasi-isometry f : Sol — Sol induces a map f5 : Y Sol Ud¥ Sol —
dY Sol U O Sol.

Consider two vertical geodesic rays lying in the same (x, t)-plane, i.e. of the form
vt (21,y,t) and o @ t — (22,y,t) for some fixed z1,z2,y € R. The metric
on the plane is e~ 2!dz? + dt? so d(v1(t),72(t)) = e™?* < 1 for all t € [0,00) and
hence v, ~ 5. Conversely suppose that two vertical geodesic rays lie in the same
(y,t)-plane, i.e. that they are of the form v : ¢t — (x,y1,t) and v2 : ¢t — (z,y2,1)
for some fixed z,9;,2 € R. Now the metric on this plane is e?’dy? + dt? so
d(71(t),72(t)) = €*' which is unbounded. Hence 7; and 7 are not asymptotic. It
follows that AV Sol is identifiable with the collection of (,t)-planes in Sol, which
are indexed by R, and hence is isometric to R. Similarly 0%”Sol is also isometric
to R. Since an 'upward’ and a 'downward’ geodesic ray are not asymptotic, Y Sol
and 0¥ Sol are disjoint, and so their union is isometric to R L R.
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Definition 22. Let X,Y be metric spaces. If f: X — Y is a quasi-isometry then
there exists a quasi-isometry f=!:Y — X, called a quasi-inverse to f, such that
there exists € so as dx (z, f71f(z)) < eforall x € X and dy (y, ff*(y)) < e for all
yevy.

Let ~ be the equivalence relation on the set of quasi-isometries X — X given
by f ~ g if there exists e such that d(f(z),g(x)) < e for all z € X. Then the quasi-
isometry group of X, written QZ(X), is defined to be this set of quasi-isometries
modulo ~.

We have shown that a quasi-isometry Sol — Sol induces a map fs : RUR —
R UR. Note that if f1, fo are quasi-isometries Sol — Sol with f; ~ fo and
is a vertical quasi-geodesic then fi(vy) and f2(y) are asymptotic, so in fact each
f € QI(Sol) induces a map fy : RUR — R R, *EENe can show that fy is
continuous, *¥¥rRFRRRk Now Jet f~1 be the quasi-inverse to f € QZ(Sol) and
let v be a vertical quasi-geodesic. Then there exists € such that d(ff~!(z),z) < ¢
and d(f~1f(z),x) < eforall x € Sol. Thus f=1f(y) ~vy~ ff~1(y) and so (f1)s
is an inverse to fg in C(R). fy is therefore a homeomorphism of RUR, and we have
shown that there exist a homomorphism Q7 (Sol) — Homeo(R UR).

Definition 23. A quasi-action of a finitely generated group G on a metric space
X is a homomorphism G — QT (X).

Lemma 24. Let ' be a finitely generated group quasi-isometric to a metric space
X. Then there exists a quasi-action v — g, of I' on X. Furthermore there exists
A>1 and € > 0 such that ¢ is a (X, €)-quasi-isometry for all v € T'.

Proof. Let 6 : ' — X be the hypothesized quasi-isometry. Then for v € T let
¢y = 0L,0~" where L., : I' — T is left multiplication by ~. Since L, is an isometry,
and hence trivially a quasi-isometry, ¢, € QZ(X). If 1,72 € T then ¢y, =
JLyjof ' = fLy Loy f™  ~ fLy [ fLy f7' = ¢4,45, s0 we do indeed have a
quasi-action. If f=!is a (A1, €1)-quasi-isometry and f is a (Ag, €2)-quasi-isometry
then g, is a (A2A1, A2€1 + €2)-quasi-isometry for each 7. O

Applying this construction to the quasi-isometry given in the hypothesis of the
theorem, we obtain quasi-action of I' on Sol which can be shown to have the fol-
lowing two properties:

Co-compactness: There exists C' € R such that for all € Sol there exists
v € T' with d(z, ¢4(0)) < C, where 0 is the point (0,0,0) € Sol.

Proper discontinuity: For all z € Sol and for all C' > 0, [{y € T'|d(¢,(z), z) <
C}| is finite.

We showed above that there exists a homomorphism QZ(Sol) — Homeo(R LR),
and so by composition we have a homomorphism ¥ : I' — Homeo(R UR). Now, by
passing to an index 2 subgroup if necessary (which will not affect the conclusion

of the theorem), we can assume that ¥(v) fixes each component of R LR for each
v € T'. Thus we have ¥ : I' — Homeo(R)?.

Definition 25. f € Homeo(R) is a quasi-symmetric homeomorphism if there exists
K > 1 such that for all z,y € R

1 < M@ =1E _
f)l
where z is the midpoint of x and y.

A subgroup H < Homeo(R) of quasi-symmetric homeomorphisms is uniform if
there is such a constant K which holds for all h € H.
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Proposition 26. Let f : Sol — Sol be a (), €)-quasi-isometry, and let (f3, f2) €
Homeo(R)? be the induced homeomorphism. Then f} and f3 are quasi-symmetric
with constant depending only on A and €.

PT‘OOf. K3k ok sk ok ok ok ok ok ok ok >k sk skok sk ok kokskkk O

It follows that the image of I' in Homeo(R)? is the direct product of two uniform
groups of quasi-symmetric homeomorphisms.

Theorem 27 (Hinkkanen). If H < Homeo(R) is a uniform group of quasi-symmetric
homeomorphisms then there exists a quasi-symmetric homeomorphism p € Homeo(R)
such that pHp~! < Aff(R). [No proof]

Thus by composing with a conjugation we can assume that ¥ : I' — Aff(R)2.
Lemma 28. |ker(V)| is finite.

Proof. W is constructed as a composition of homomorphisms
I' — QZ(Sol) — Homeo(R)? — Homeo(R)?.

The last of these, since it is a conjugation, is an isomorphism, so it suffices to prove
that the composition of the first two homomorphisms has finite kernel.

Let g € ker U. Fix a vertical hyperbolic plane H? C Sol, and choose a point
c € H? and two geodesic rays 71,72 : [0,00) — H? with ;(0) = ¢ and 7; and
72 representing different boundary points in OH?. Since g € ker ¥, ¢, fixes the
boundary of Sol and hence of H?, so there exists K such that dy(g,71,71) < K
and d(gg7y2,72) < K. Hence there exist z1 and z2 such that d(ggv1(0), v1(z1)) <
K and d(gy72(0),7v2(z2)) < K, and thus d(vi1(z1),72(z2)) < 2K. Choose M €
R such that g(71(z),72(y)) > 2K for all z,y > M. Then x1,22 < M. Thus
d(ggm1(0),7(0)) < d(ggm1(0),71(x1)) + d(m(x1),71(0)) < K + M. But the quasi-
action of I on Sol is properly-discontinuous, so there are only a finite number of
g € I' which satisfy such an inequality. O

Thus we have that I'/K < Aff(R)? for some finite K. Since Aff(R) is soluble so
is Aff(R)? and hence I'/K.

Definition 29. A group G is a Poincaré duality group if it has a finite dimensional
K(G,1), say of dimension n, and H;(G) =2 H"*(G) for 0 <i <n.

Theorem 30. Let G be a soluble Poincaré duality group. Then G is virtually
polycyclic. [No proof]

Theorem 31 (Gerston). The Poincaré duality property of groups is an invariant
of quasi-isometry. [No proof]

We want to show that I'/ K has the poincaré duality property. To see this choose
A= (g g ), say, so as Z?2 X 4 Z is quasi-isometric to Sol, and hence to I', and hence,
since |K| is finite, to ['/K. The action of Z? x4 Z on Sol by left translation is
a covering space action, and Sol is simply connected, so by quotienting we obtain
a K(Z* x4 Z,1) space M. Since Sol is a 3-manifold so is M, and so Poincaré
duality gives that H;(M) = H3~¢(M) for 0 < i < 3. It follows that Z? x4 Z has
the Poincaré duality property, and hence by theorem 31 so does I'/K. We deduce
that T'/ K is virtually polycyclic ¥*###kssiciiNow consider Hirsch length and
growth rates. This complete the proof of theorem 15.



